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Abstract

Oil palm remains an important source of rural income in South East Asia. At the
same time, Indonesia has become a hotspot for large-scale species extinction and a loss
of biodiversity in favour of agricultural production. The present study sets out to as-
sess the environmental performance of smallholder oil palm production with respect
to biodiversity. Using a panel dataset that combines conventional farm data together
with an account of plant diversity, we estimate a restricted hyperbolic environmental
distance function. We integrate loss of biodiversity as an undesirable output into the
production model which allows explaining shortfalls in environmental performance
and the derivation of shadow prices of biodiversity conservation. We find a substan-
tial environmental inefficiency, which is partly explained by both chemical and manual
weeding practices, highlighting the potential for improvements in both the environ-
mental and the economic dimension. Moreover, the value for conserving one species
of the average biodiversity on a farmers plantation was 325 USD in 2018. Payments for
ecosystem services schemes could be a viable policy response to conserve meaningful
levels of biodiversity while simultaneously allowing smallholders to increase palm oil
output. In general, addressing drivers of environmental performance in PES designs
amplifies its effect without reducing output.
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1 Introduction

Agriculture is strongly intertwined with the environment and therefore key to the provi-

sion and decay of ecosystem services. Biodiversity is a critical link between the two as

numerous ecosystem functions rely on the diversity of organisms. For instance, the provi-

sion of food, water, medicine, fuels and fiber and air quality are vital ecosystem services

that are heavily dependent on intact biodiversity (TEEB, 2010; Hooper et al., 2012). On the

other hand, many forms of agricultural production and the related land use change (LUC)

have been shown to critically reduce local species diversity (Grass et al., 2020; Clough

et al., 2016). Both expansion and intensification of agricultural production are increasingly

threatening biodiversity and species existence, which have been declining dramatically

around the world (IPBES, 2019; Chaplin-Kramer et al., 2015).

The trade-off between biodiversity and output in agriculture is particularly important

not only because food is a necessity good but also because about half of the world’s popu-

lations retrieve their livelihoods from activities relating to food procurement (Davis et al.,

2023). Specifically, smallholder participation in food value chains have been shown to

contribute to economic development. At the same time, however, smallholder production

has often been associated with environmentally detrimental technologies and manage-

ment practices underpinned by lax regulation. In contrast to larger production estates in

high-income countries and macro level studies, relatively little work is available on the en-

vironmental performance of smallholders, conservation potential and policy implications

(e.g. Rosa-Schleich et al., 2019; Meyfroidt, 2018; Savilaakso et al., 2014). Smallholders pro-

vide exceptional opportunities for conservation as their mosaic-type spatial arrangements

allow for a highly diverse landscape matrix (Rudolf et al., 2020; Sayer et al., 2012). Vice

versa, the negative impacts on biodiversity related to production area are considerable

(Grass et al., 2020).

This paper assesses the environmental performance of smallholder oil palm produc-

ers in Indonesia. Smallholder producers in Indonesia are a particularly interesting case
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study as they contribute to 34% of national palm oil production (Indonesian Ministry of

Agriculture, 2016). In addition, given the relatively low yields of smallholders compared

with large estates, the share of the area that they manage is even larger (Euler et al., 2017;

Byerlee and Viswanathan, 2018). At the same time, Indonesia has become a hotspot for

large-scale species extinction and a loss of biodiversity. At the expense of several ecologi-

cal crises, the palm oil boom contributes to rising exports and poverty reduction. Increases

in income and consumption have been linked to palm oil production (Kubitza et al., 2018a;

Qaim et al., 2020), and have been shown to contribute to the remarkably declining rates of

poverty and undernourishment in the country (FAO, 2020). Nonetheless, remedying the

trade-offs between economic and environmental objectives is becoming an increasingly

important item on both national and intergovernmental policy agendas. More precisely,

policy-makers are interested in steering production towards maximized oil palm output

over minimized biodiversity loss (Wiebe et al., 2019; IPBES, 2019). However, only a few

policy programs have been implemented in the region to date and even fewer have been

successful (Hein, 2019). One obstacle to policy action on a meaningful scale could be the

lack of valuation of biodiversity within the palm oil production system and vice versa.

Our work offers several contributions to the existing literature. First, instead of limiting

the analysis exclusively to either ecological aspects of the decay of ecosystem services (e.g.

Koh and Wilcove, 2008; Savilaakso et al., 2014; Fitzherbert et al., 2008; Vijay et al., 2016;

Darras et al., 2019) or its socioeconomics (e.g. Klasen et al., 2016; Lanz et al., 2018; Sibhatu,

2019; Cacho et al., 2014), we choose an interdisciplinary approach to empirically identify

the underlying mechanisms of the trade-off between the two. Second, in contrast to previ-

ous work focusing on macro-relationships between biodiversity and palm oil production

(e.g. Chaplin-Kramer et al., 2015; Bateman et al., 2015), we base our analysis on microeco-

nomic data to assess the impacts of managerial skill on the trade-off. Third, we analyze the

behavior of smallholder producers of palm oil. The environmental costs of palm oil pro-

duction are comparably well documented for large estates, whereas little is known about

the environmental performance of smallholder oil palm producers (Savilaakso et al., 2014;
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Robbins et al., 2015). Fourth, we contribute to the debate on the payments for ecosystem

services (PES) policy implications and highlight the advantages and challenges related to

differently-designed incentive schemes (Vorlaufer et al., 2023; Cisneros et al., 2022; Rudolf

et al., 2022; Arora et al., 2021; Ward et al., 2021; Manning et al., 2020; Salzman et al., 2018;

Wunder et al., 2008).

We develop a hybrid between hyperbolic and enhanced hyperbolic distance functions

(Cuesta et al., 2009) to model the production process of smallholder oil palm farmers in

Sumatra, Indonesia, including biodiversity loss as an undesirable environmental output.

We use a comprehensive data set on oil palm output, plant biodiversity, conventional pro-

duction inputs, management practices as well as socioeconomic variables of smallholder

oil palm producers to describe the trade-off between oil palm output and biodiversity loss

and its underlying mechanisms. Furthermore, the duality of the approach allows us to de-

rive shadow prices and gain insights into the opportunity cost of biodiversity conservation

in this production system.

Our results indicate that smallholder oil palm production suffers from environmen-

tally inefficient production. This implies that either substantially higher output could be

achieved or - conversely - a higher local plant diversity could be maintained at the present

level of input use by eliminating the environmental inefficiency of production. Similarly,

overuse in input results in inefficient outcomes in terms of both desirable and undesirable

outputs. Furthermore, environmental performance is linked to both manual and chemical

weeding practices, as well as the migratory status of the farmer. We calculate the aver-

age abatement cost for farmers of raising average biodiversity on their plantation by one

more species at 325 USD per year. Finally, simulating several PES scenarios highlights

promising policy options to reduce the loss of biodiversity while simultaneously increas-

ing smallholder output levels.

The remainder of this paper proceeds as follows. Section 2 sets the stage by providing

some background on the case study and the palm oil boom. Section 3 introduces the theory

and application of environmental performance measurement based on distance functions
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and the intuition of biodiversity measurement and presents the data. Section 4 details the

results from the analysis, discusses their robustness and places them in context of the rel-

evant literature. In section 5, we simulate several incentive-based policy schemes. Finally

section 6 summarizes and concludes the paper.

2 Palm oil: Boom and crisis in South East Asia

In 2018, global palm oil production exceeded 70 million ton per year, making it the most

important vegetable oil in terms of quantity as well as the tenth largest agricultural crop

worldwide. Remarkably, back in 1980 global production levels were only at about 5 million

ton and palm oil held only minor relevance in international oil and commodity markets

(FAO, 2020). Being relatively more productive in terms of area and labor, it has emerged as

a particularly competitive crop in some agricultural systems around the world. Although

the oil palm originates in Africa, the massive expansion of palm oil mainly occurred in

tropical Asia and more precisely in Indonesia and Malaysia, which together supply more

than 87% of global palm oil. During the times of exponential growth in oil palm output,

a variety of development indicators also sharply improved in the respective areas. For

instance, the prevalence of undernourishment in Indonesia more than halved from 18.5%

in 2000 to 8.3% in 2017. The poverty headcount ratio of people living off less than 1.90$

per day declined from more than 70% in the early-1980s to 6% in 2017 (World Bank, 2020).

While the economic development in Indonesia is certainly tied to a multivariate set of

drivers, agricultural advancement and oil palm production are a significant part of this

equation. Indeed, a number of studies relate increased national palm oil income to im-

proved rural livelihoods, rural poverty and economic development in general (e.g., Sayer

et al., 2012; McCarthy et al., 2012; Kubitza et al., 2018a).

Smallholder producers are also part of the economic success of palm oil, and as of 2016

they provide 34% of palm oil output in Indonesia (Indonesian Ministry of Agriculture,

2016). Besides establishing large governmental plantations, the government proactively
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promoted smallholder participation in the value chain launching several programs starting

in the 1980s. One prominent example is the trasmigrasi program which supported the

relocation of some 1.7 million family farmers from the densely populated islands of Java

and Bali to less-populated parts of Indonesia, including Sumatra, to cultivate - among

other crops - oil palm. However, in the more recent past, smallholder participation has

been declining and smallholders are increasingly marginalized within the palm oil supply

chain in Indonesia. Additionally, questionable land rights policy places further pressure

on smallholder producers in Indonesia (McCarthy et al., 2012; Kubitza et al., 2018b; Rist

et al., 2010).

From an environmental perspective, smallholder producers are still associated with

direct forest land appropriation (Kubitza et al., 2018b; Krishna et al., 2017), and notoriously

low yields, which place further pressure on resource use and imply low environmental

performance, at least with regards to land input (Dalheimer et al., 2022). At the same time

the accelerated rates of LUC have led to several ecological crises. Against the background

of massive growth of oil palm output and area expansion, the accelerated rates of LUC

have led to several ecological crises. Koh and Wilcove (2008) suggest that in Malaysia

and Indonesia more than 50% of the palm oil area was formerly forested land, including

rain forests with exceptionally high levels of species diversity and endemism. Oil palm

plantations harbour much lower levels of biodiversity than forests and dramatically alter

species composition across taxonomic groups (Fitzherbert et al., 2008; Grass et al., 2020).

At current rates of deforestation, Sodhi et al. (2004) predicts that 42% of biodiversity in

tropical Southeast Asia could be lost by the end of the century. Similarly, tropical forests

play a role in serving as the terrestrial carbon sink, storing 428 Gt of carbon. LUC has led to

fundamental changes in the balance and according to the IPCC (2000), LUC in the tropics

is the world’s second largest green house gas (GHG) emitter, with estimates ranging from

12-20% of global GHG emissions. Finally, other environmental problems such as wildfire

hazes bearing substantial human health threats, severe soil degradation and pressured

water imbalances as well as quality have been associated with the expansion of oil palm
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in South East Asia.

Jambi province on Sumatra Island is a point in case for both the economic palm oil

boom as much as the ecological crises development. Oil palm plantations were first in-

troduced by large governmental estates and subsequently also adopted by smallholders

during 1980s and 1990s. Smallholder adoption was particularly promoted by the govern-

ment by means of contract schemes (Gatto et al., 2017) and the trasmigrasi program in the

past, although today it usually occurs independently. Between 1990 and 2018, oil palm pro-

duction and plantation area increased more than tenfold from 45,000 ha to 506,000 ha and

107,000 ton to 1,142,000 ton of oil palm fruit, respectively. As of 2018, more than 200,000

households are dependent on palm oil production in Jambi province (Kubitza et al., 2018a).

On the environmental side, Jambi has been experiencing severe degradation during

the recent decades. For instance, over 80% of GHG emissions in Jambi result from LUC,

deforestation as well as forest and peat land degradation. At the peak of the palm oil boom,

an average annual forest loss of 76,522 ha was measured between 2006 and 2009 (Hein,

2019), leading to a severe reduction of biodiversity (Rembold et al., 2017) and threatening

the survival of plant and animal species (Linkie et al., 2003; IUCN, 2015).

Besides being exemplary for the oil palm boom in the face of several ecological crises,

Jambi province is also a meaningful region to study the trade-off between desired and

undesired outputs in the light of a long-standing tradition of incentive-based policy pro-

grams, in particular regarding biodiversity loss mitigation. Already in 2002 the Reward-

ing Upland Poor for Environmental Services (RUPES) by the World Agroforestry Centre

(ICRAF) aimed to pinpoint key monetary benchmarks to develop incentive-based pro-

poor PES in Jambi (Villamor and van Noordwijk, 2011). Since 2010, Jambi is one of In-

donesia’s National Council on Climate Change (DNPI) model provinces for REDD and

green growth. However, environmental policy programs and particularly PES in Jambi

have been short lived thus far (Hein, 2019). One crucial reason is certainly the cumbersome

economic valuation of the complex dovetail of palm oil production systems - composed of

smallholders and large estates - and the manifold ecosystem services in Jambi province.

6



Policy suffers from a lack of value assessment of local ecosystem services to design fruit-

ful incentive schemes. One particularly relevant case is the trade-off between palm oil

production and biodiversity.

3 Modeling the oil palm-biodiversity trade-off

In order to quantify the trade-off between the production of fresh fruit bunches for palm

oil and the associated loss of biodiversity, we need (i) an adequate measure of biodiversity,

and (ii) a suitable economic model that can subsequently be parameterized with the data at

hand. Regarding the latter, we propose a directional distance function in a duality frame-

work considering one desirable output, one undesirable output as well as regular inputs

of production. However, the former warrants some more attention as biodiversity is a rel-

atively broad term. Accordingly, in order to quantify a particular environmental-economic

relationship, we need to establish comprehensible concepts for both.

In this section, we focus on the derivation of the hyperbolic distance function approach

to investigate the interdependence between biodiversity loss and oil palm fresh fruit bunch

production. Moreover, we outline our data at hand, describe measures, and present the

empirical specification.

3.1 Hyperbolic distance functions

Since the pioneering work of Aigner et al. (1977) and Meeusen and van Den Broeck (1977),

a substantial body of literature uses firm or farm level data to attribute deviations between

observed output and maximal obtainable output that can be produced (as defined by the

production technology) to managerial performance, i.e. technical efficiency. Expanding

the framework to settings in which firms produce multiple outputs and employ multiple

inputs, distance functions have been proven a useful framework (Shephard, 1970). Specif-

ically, output distance functions have become the workhorse for distinguishing between

7



multiple outputs of production process that are desirable1, i.e. marketable or providing

utility by some other measure. These are outputs that producers maximize. (Chambers

et al., 1998; Brümmer et al., 2002, 2006). However, most production processes inflict envri-

onmental externalities which are functions of desired outputs. A large body of literature

models outputs that occur as unintended by-products that are utility-decreasing, i.e. un-

desirable, and producers neither minimize nor maximize, using environmental distance

functions. (e.g. Coggins and Swinton, 1996; Chung et al., 1997; Färe et al., 2007; Hoang and

Coelli, 2011; Murty et al., 2012; Kumbhakar and Tsionas, 2016; Huang et al., 2016; Dakpo

et al., 2016; Tothmihaly et al., 2019; Vogel et al., 2023).

The relationship between desirable output procurement and undesirable output inflic-

tion of producers can take various forms. Considering smallholder oil palm fruit bunch

production and biodiversity loss, land and land management are likely to result in the loss

of biodiversity. However, biodiversity also determines the presence of pollinators, which

are key to fruit formation in oil palms. Oil palms continuously set fruits throughout the

year and the yield of oil palms depends on the frequency and extend of pollination. Thus,

at high rates of biodiversity loss, fresh fruit bunch production will be affected negatively as

the habitat for pollinators worsened. This interdependence suggest that the relationship

between biodiversity loss and oil palm fresh fruit bunch production takes an inverse-u

shape.

In addition to the technology that defines at what cost of biodiversity loss fresh fruit

bunches are produced, farms can also suffer from inefficient management. In Figure 1

we adapt the illustration in Skevas et al. (2018) to our inverse-u technology to describe

the relationship between desirable and undesirable outputs and inefficiency at the farm

level. Let us assume that a farms produce fresh fruit bunches as the desirable output but

inflict biodiversity loss as an undesirable output at the same time. One specific farm, for

instance, produces at point (A) and thus is inefficient as it falls short of the frontier. This

specific farm could produce more fresh fruit bunches, without losing more biodiversity

1Another prevalent term for these outputs in the environmental economics literature is good outputs.

8



A

C

B

D

Undersirable output (Biodiversity loss)

D
es

ir
ab

le
 o

ut
pu

t (
Fr

es
h 

fr
ui

t b
un

ch
 p

ro
d

uc
ti

on
)

FIGURE 1: Hyperbolic efficiency and directional distances

or, conversely, inflict less biodiversity loss while not having to give up any fresh fruit

bunch production. Producer policies may aim to improve the economic performance of

the farm by promoting efficiency measures to assist producers to operate closer to the

frontier, which is depicted by (AC). Alternatively, producer policies may aim to improve

the environmental performance of the farm by promoting efficiency measures that will

assist the farmer to operate closer to the frontier, as depicted by (AB). Such policies can

improve either palm oil output, biodiversity or both without trading-off each other and

target management practices.

However, both potential movements as a response to the hypothetical policy changes

are unlikely to occur in a straight horizontal or vertical direction (Skevas et al., 2018).

Specifically, trade-offs might arise between economic and environmental performance. For

instance, the participation of Finnish grain farmers to Agri-Environmental programmes

(AEPs) might result in environmental improvements and simultaneous productivity losses

(Bostian et al., 2020; Sidhoum et al., 2022). Similarly, more trade-offs might arise be-

tween the economic performance of the farms and other farm specific objectives, such

as improved animal welfare (e.g. Hansson et al., 2018). Consequently, we assume that

farms may expand desirable output and contemporaneously contract undesirable outputs.

Therefore the joint movement will result in hyperbolic efficiency for the case of farms,
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which is depicted by (D) (Skevas et al., 2018).

In a parametric setting, two alternative approaches have been proposed in the liter-

ature that account for equiproportionate expansion of desirable outputs and contraction

of undesirable outputs. The first is the use of a directional distance function, which re-

quires the a priori assignment of a direction. The directional distance function has two

major disadvantages: (i) the efficiency measure does not satisfy the key property of com-

mensurability (Peyrache and Coelli, 2009), and (ii) it not trivial to capture the effect of

determinants on efficiency (Serra et al., 2011). An alternative approach is the hyperbolic

distance function (Cuesta and Zofío, 2005; Cuesta et al., 2009). This approach accounts for

the equiproportionate expansion of desirable outputs and contraction of undesirable out-

puts, in a similar way that was presented in the figure above. Hyperbolic distance func-

tions have been widely used to address various environmental performance problems of

production processes (Skevas et al., 2018; Mamardashvili et al., 2016; Adenuga et al., 2019).

One advantage of the parametric hyperbolic distance function is that it can easily capture

efficiency determinants (Glass et al., 2014; Mamardashvili et al., 2016), and does not require

the specification of arbitrarily-chosen directional vectors.

In essence, hyperbolic distance functions model the entire production process that in-

cludes trade-offs among inputs, between inputs and outputs and among outputs. Extend-

ing this framework to the presence of environmental outputs implies modeling negative

externalities of production, which have been referred to as environmental distance func-

tions. Assuming that a firm produces one desirable output (y) and one undesirable out-

put (b) using inputs x = (x1, x2, ..., xn), the value of the distance function is equal to the

maximum possible proportional expansion in desirable output y and the proportional re-

duction of the undesirable outputs b that is simultaneously feasible, at a given input level.

The frontier spanned by the observations for which no further expansion (reduction) is

feasible constitutes an implicit function of the trade-off between economic output and the

undesirable environmental output. Following Cuesta et al. (2009) we define the hyperbolic

10



distance function as

DH(x, y, b) = min
{

θ :
(

x, y · θ,
b
θ

)
∈ P (x)

}
, (1)

where P (x) represents the production possibility set, i.e., the feasible quantities of y

and b that can be produced from the available input vector x.

For DH(x, y, b) = 1, the farmer is fully efficient in the sense that no reduction of un-

desirable output or an increase of desirable output is possible at the given level of inputs,

which also renders the distance value as a measure of environmentally-adjusted technical

efficiency. In contrast to conventional measures of technical efficiency, the hyperbolic effi-

ciency measure takes into account the negative environmental outputs of the production

process and consequently may be considered a measure of environmental performance of

the producing unit.

In order to allow for further adjustments in input use, the enhanced hyperbolic distance

function additionally accommodates potential reductions of inputs, and therefore provides

an even more flexible framework:

DE(x, y, b) = min
{

θ :
(x

θ
, y · θ,

b
θ

)
∈ T

}
, (2)

where T represents the technology set of all combinations of y, b, and x that are tech-

nologically feasible.

The hyperbolic distance function has properties of (i) almost homogeneity2, and (ii)

monotonicity, in particular non-decreasing in desirable outputs3, and non-increasing in

undesirable outputs4, and non-increasing in inputs5 (Cuesta et al., 2009). The enhanced

hyperbolic distance function also allows a simultaneous contraction of inputs in addition

to the asymmetric behavior of desirable and undesirable outputs, such that the almost ho-

2DH(x, µy, µ−1b) = µDH(x, y, b), for µ > 0
3DH(x, λy, x) ≤ DH(x, y, b), λ ∈ [0, 1]
4DH(x, y, λb) ≤ DH(x, y, b), λ ≥ 1
5DH(λx, y, b) ≤ DH(x, y, b), λ ≥ 1
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mogeneous property is also extended to the inputs6. Additionally, both functions exhibit

(iii) concavity: more precisely they are quasi-concave in desirable outputs for all unde-

sirable outputs and inputs. In the enhanced hyperbolic case, this also applies for inputs,

while the hyperbolic distance function is concave in inputs for all desired and undesired

outputs.

However, the framework of the hyperbolic - and its more flexible version, the enhanced

hyperbolic distance - function either do not allow for input contraction or they do so for

all inputs. In smallholder production systems, only some of the inputs are flexible while

others are not adjusted instantly such that both hyperbolic and enhanced hyperbolic dis-

tance are too restrictive. To overcome this problem, we propose a hybrid of both functions

in which fixed inputs are distinguished from flexible inputs. Practically, this implies mul-

tiplying only flexible inputs by θ and not others. Thus, our restricted enhanced hyperbolic

distance function becomes

DR(x̄, x, y, b) = min
{

θ :
(

x̄,
x
θ

, y · θ,
b
θ

)
∈ T

}
, (3)

where x̄ now designates inputs that are fixed in the short term and x inputs that are

variable. Based on the almost homogeneity property, we obtain an estimable form of the

function by setting θ = 1
y , which is the inverse of the desirable output. y is the normalizing

output of the distance function7, which subsequently can be expressed as

DR(x̄i, xi · yi, bi · yi) =
1
yi

DR(x̄i, xi, yi, bi), (4)

and in logarithmized form

lnDR(x̄i, xi · yi, bi · yi) = lnDR(x̄i, xi, yi, bi)− lnyi, (5)

Assigning that DR(x̄i, xi, yi, bi) = exp(−ui), where ui is the hyperbolic inefficiency

6DH(µ−1x, µy, µ−1b) = µDH(x, y, b) for µ > 0
7Note that (θ) can also be set equal to the undesirable output, see e.g. Huang et al. (2016)

12



(Cuesta et al., 2009), we can take equation 5 into the form of a stochastic production frontier

by isolating y and adding the error term vi to capture statistical noise:

−lnyi = lnDR(x̄i, xi · yi, bi · yi) + ui + vi, (6)

which can be estimated using Maximum Likelihood (ML). The procedure is equiva-

lent to obtaining estimable forms of the regular hyperbolic and the enhanced hyperbolic

distance function (equations 1 and 2).

3.2 Shadow price

The duality of the distance function allows deriving shadow prices, i.e., expressing one

output, either desirable or undesirable, in units of another output. If price data for the

base output are available, shadow prices are widely used to assign a price to unit changes

in outputs, which are difficult to quantify endogenously. Shadow prices are a means to

understand the cost at which a producer can contract a unit of undesirable output (Färe

et al., 2002; Cuesta et al., 2009; Mamardashvili et al., 2016; Adenuga et al., 2019) and thereby

they represent a measure of abatement costs. Another way to interpret the shadow price of

biodiversity loss expresses the hypothetical cost to the producer of conserving one species.

If species had that shadow price, producers would conserve as long as the marginal profit

is equal to or smaller than the shadow price.

Assuming that a smallholder farmer aims to maximize profits, she faces the following

problem:

Π(x, py, pb) = max
y,b

{ pgy
pbb

: DR(x̄, x, y, b) ≤ 1
}

. (7)

where pg and pb are the prices for the desirable y and undesirable output b respec-

tively. The corresponding first order conditions of the maximization problem and for the

desirable and the undesirable output are:
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pg

pbb
− λ

∂DR

∂y
y = 0 ⇒

pg

pbb
= λ

∂lnDR

∂lny
DR. (8)

−
pgy
pbb2 − λ

∂DR

∂b
b = 0 ⇒ −

pgy
pbb2 = λ

∂lnDR

∂lnb
DR. (9)

where λ is the Lagrange multiplier. Note that the shadow price formulation always

refers to performance at the frontier, which implies no inefficiency in production (DR = 1).

Hence, the term (DR) cancels out in both equations of the first order conditions. If we take

the ratio of both conditions, then this results to the shadow price of b in terms of y:

−
∂lnDR
∂lnb

∂lnDR
∂lny

=
b
y

∣∣∣∣
DR=1

(10)

which measures the amount of revenue from y that will be lost when b decreases by one

unit, in absence of inefficiency.

3.3 Measuring biodiversity

Having established a suitable economic model to quantify the trade-off between conven-

tional outputs under consideration of conventional inputs, we require an equally suitable

measure of biodiversity. In the context of this study, biodiversity refers to species diver-

sity. While there are often taxon-specific responses to LUC, plants have been shown to be

reliable proxies of overall species diversity in our study region (Clough et al., 2016). There-

fore, we focus on plants exclusively because they are ecologically highly relevant as well

as relatively easy to record. Plants provide both habitat and energy (e.g. in the form of

food) for other organisms like animals and fungi, and they can thus be considered as the

foundation of terrestrial biological communities. Consequently, plant diversity is closely

coupled with that of various animal groups, thus making it a proper proxy for overall

diversity (e.g. Barnes et al., 2017; Potapov et al., 2019).

In addition, diversity is highly scale-dependent (Chase et al., 2018) and distinguished
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into (i), (α)-diversity, the diversity at a given site with presumed homogeneous environ-

mental conditions; (ii) (γ)-diversity, the diversity of a region; and (iii) (β)-diversity, which

describes the differences in species composition between sites in a region (Jost, 2007). To

relate biodiversity to farmers’ management practices, focusing on the (α)-diversity at the

plantation level is the most adequate spatial scale, since management practices presum-

ably vary between farmers. As recording all plant species and individuals of a plantation

is eminently time-consuming, sampling plots of appropriate sizes is preferable under the

assumption that they are representative of the whole plantation (Newbold et al., 2015).

Besides the matters of organism groups and scale considerations, choosing an appro-

priate measure is a further critical pillar of reliably quantifying biodiversity. A widely used

framework of biodiversity measures are Hill-numbers (Hill, 1973) or measures of diversity

of different orders q. Hill-numbers measure diversity D as a function of the number of

species S and their relative abundance pi and q ̸= 1, which determines the sensitivity of

the measure to the relative frequencies, such that

qD =

(
S

∑
i=1

pq
i

) 1
1−q

(11)

One widely-used measure of α diversity is at q = 0 which constitutes the mere count

of species, i.e. species richness (SR). Such diversity of order zero (q = 0), SR is insensi-

tive to species frequencies and higher-order measures of diversity (q > 1), e.g. Simpson

diversity with q = 2) are biased towards common species. Diversity of order one (q = 1)

is undefined. Yet, it’s limit is the exponential of Shannon entropy, i.e. ENS =
q

lim
q→1

D =

exp
(
−∑S

i=1 pi ln pi

)
, with ln pi × pi = 0 for pi = 0, given the relative abundance p of a

species i. This measure is also referred to as the effective number of species (ENS) and

weighs rare and common species by their frequency, without disproportionately favoring

either rare or common species (Jost, 2007). The ENS states the number of species in a

hypothetical community with all species being equally abundant and the same Shannon
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entropy8 as a given sample and thus it favours neither rare nor common species (Jost, 2007;

Chao et al., 2014)

Generally, the lower the order of diversity, the more sensitive to undersampling are

measures such that the real SR is difficult to assess with a reasonable amount of time

and resources. Especially in diverse ecosystems like tropical forests, many species are

extremely rare (Magurran and Henderson, 2003) and therefore they are likely to be missed

in a given sampling plot. Consequently, the observed number of species in a plot will

be a biased underestimate and highly sensitive to the number of individuals surveyed.

Higher-order diversity measures, like Simpson diversity (q = 2) are more robust to under-

sampling because they mostly rely on common species. Their downside is the lower sensi-

tivity to differences in diversity between samples (Figure 4 in appendix A). ENS provides

a good compromise between susceptibility to undersampling and sensitivity to differences

between samples. Techniques of rarefaction and extrapolation that produce species accu-

mulation curves serve to standardize measures of diversity by estimating them for a given

number of individuals, which is a prerequisite for comparing the diversity of two or more

communities (Chao et al., 2014).

3.4 Data

Just as much as the methods employed in this study, the data also cover two main com-

ponents. Both data partitions stem from extensive socioeconomic farm household survey

conducted in Jambi Province, Indonesia in 2012,2015 and 2018, as part of a larger inter-

disciplinary research project (Drescher et al., 2016). The dataset has been applied in other

empirical works (e.g. Kubitza et al., 2018b; Euler et al., 2017; Kubitza et al., 2018a; Krishna

et al., 2017; Clough et al., 2016). The panel covers all conventional input and output data

required to accurately model palm oil production as well as socioeconomic variables that

may help to explain managerial performance. The second partition of the data is a detailed

account of plant abundance collected on a representative location on farms.

8The Shannon entropy is a widely used diversity index that considers the relative abundances of all species.
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Table 1 lists the variables used in the analysis and the respective units of measurement,

variable designations in the empirical part of the paper as well as key summary statistics.

Production of fresh fruit bunches serves as the desirable output y while the inverse of the

effective number of species (ENS) is the measure of the undesirable output b. We account

for three inputs, i.e. area of production, labor and agrochemicals, which constitutes of

the sum of herbicides, pesticides and fertilizers. Additionally, the age of the plantation is

crucial to oil palm production since the yield of the perennial crop has a nonlinear rela-

tionship with time. Oil palms start only producing fruit bunches 3 years after plantation.

Peak yields vary across regions and can start as early as seven or as late as sixteen years.

Usually, at the age of 24 oil palms exhibit declining yields and after 30 years they reach

production levels of zero (Corley and Tinker, 2003). In addition to the economic produc-

tion variables, a range of socioeconomic variables such as age, education and household

size are available for specifying the restricted hyperbolic distance function.

TABLE 1: Variable overview and summary statistics

Variable Unit Variable Mean St. Dev. Min Pctl(25) Pctl(75) Max

Outputs
Oil palm FFP† production kg y 33,744 30,896 38 15,800 42,200 204,000
Biodiversity ENS‡

est b 5.009 2.327 1.331 3.244 6.498 15.132
Technology

Size ha x1 2.17 1.78 0 1.5 2 12
Labour hours x2 2,629 3,068 9 1,369 2,893 31,008
Palm age years x3 16.02 7.46 3 10 22 30
Agrochemicals kg x4 7689 988 0 10 1,222.5 6,000
Yield kg ha−1 - 15,738 7,626 152 10,658 20,000 37,860

Inefficiency
Age years z1 48.07 11.33 25 40 55 79
Education years z2 7.82 4.09 0 6 12 17
HHSize people z3 4.789 1.564 2 4 6 11
Transmigrant binary z4 0.42 0.50 0 0 1 1
Chemical weeding binary z5 0.73 0.44 0 0 1 1
Manual weeding binary z6 0.31 0.46 0 0 1 1
Land title binary z7 0.69 0.46 0 0 1 1

†Fresh fruit bunch
‡Effective number of species
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Variables on the migratory status of farmers have also been collected. They are par-

ticularly interesting as the government of Indonesia has been operating the trasmigrasi

program which promoted and assisted in the reallocation of people from Java to Sumatra

to cultivate oil palm. The program also offered training related to oil palm production

which makes the migration variables particularly interesting to model the determinants of

(in)efficiency of production. In our dataset, a dummy variable captures whether the family

of the farmer itself migrated to cultivate oil palm in the past.

Regarding management practices variables on whether a farmer used chemical weed-

ing or manual weeding are available. Weeding practices on the plot have crucial impacts

on both the growth of the palms and their respective output as well as the plant biodiver-

sity on the plot. The variable on land titles captures whether the farmer is in possession of

any kind of governmental ownership certificate for his plot9.

With regards to biodiversity measurement, we collected plant abundance data on farms.

To record the (α)-diversity of vascular plants in the understorey (including ferns, lyco-

phytes, and seed plants), we established a square vegetation plot of 25 m2 in each planta-

tion. Within each plot, we assigned all plant individuals to morphospecies and counted

the number of individuals per morphospecies. Each morphospecies was photographed

for later species identification. Using the iNEXT-package in R (Hsieh et al., 2016), we

calculated the observed per-plot species richness (SRobs) and effective number of species

(ENSobs) (Jost, 2006). Since the number of individuals widely varied between plots with

a minimum of 3, a median of 364 and a maximum of 6616, we standardized the diver-

sity measures using the rarefaction/extrapolation procedure of Chao et al. (2014) which is

implemented in Hsieh et al. (2016) with the median number of individuals (n = 364) as

the base sample size. The plot-wise rarefaction/extrapolation curves indicated that some

individual-poor plots did not adequately represent local SR while sampling coverage was

sufficient for ENS. We therefore used the estimated effective number of species per 364 in-

dividuals (ENSest) as our primary measure of biodiversity, although we also ran our model

9Please refer to Kubitza et al. (2018b) for a detailed overview of land ownership structure and certification
in Jambi.
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separately with the estimated species richness per 364 individuals (SRest) for comparison

and robustness checks (Appendix B.3).

3.5 Empirical specification

In our distance function framework, we propose combining features of the hyperbolic as

well as the enhanced hyperbolic distance function to model fresh fruit bunches of a plot

in kg as the desirable output yi and biodiversity loss on the same plot, measured as the

inverse of the ENS, as the undesirable output bi. The input variables are the size of the

plot x1, x2 is labor, x3 agrochemicals and x4 the age of the plantation. While the size and

age of palms are indubitably fixed inputs, we further argue that labor is also fixed as farms

almost exclusively employ family labor and agrochemicals remain as the variable input10.

We make use of the translog functional form which offers more flexibility as opposed to

Cobb-Douglas or quadratic functions11. We employ stochastic frontier analysis (SFA) to

estimate the restricted hyperbolic distance function DR by means of ML. The final translog

restricted hyperbolic distance function specification is:

−lnyi = α0 +
3

∑
k=1

αkln(xki) + α4ln(x∗4i) + β1ln(b∗i ) +
3

∑
k=1

β1kln(b∗i )ln(xi)

+β14ln(b∗i )ln(x∗4i) +
1
2

3

∑
k=1

3

∑
l=1

αkl ln(xki)ln(xli) +
1
2

3

∑
k=1

αk4ln(x∗k )ln(x4)+

+
1
2

α44ln(xi)
2 +

1
2

β11ln(b∗i )
2 + ρ0ti + ui + vi, (12)

where b∗i = yi ∗ bi and x∗i = xi ∗ yi. In order to circumvent potential convergence

problems we scale all variables by dividing them by their geometric mean such that we

evaluate elasticities at sample means. We also include the time trend ti variable in the

10As robust checks, we also derive the empirical specification and estimate the corresponding enhanced
hyperbolic and hyperbolic distance functions where all inputs are treated equally. We also calculate further
resulting measures thereof in Annex B.2.

11The translog specification is tested to be superior to the Cobb-Douglas specification using conventional
tests for nested models.
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specification, which accounts for exogenous technical change. Other panel data speci-

fications overparamterize the model given the number of observations. vi is a normally-

distributed component of the two-component error term and captures statistical noise. The

other component represents the distance function value, or in other words, the inefficiency

of production, also accounting for loss of plant biodiversity. We assume heteroskedasticity

of ui and consequently model it using the farmer, migratory and management practices

characteristics captured in zi. Therefore:

σ2
u,i = exp(τ′zi). (13)

The parameters α, β, ρ and τ in Equation 11 and 12 are jointly estimated using ML.

Finally, we follow Battese and Coelli (1988) and transform the individual conditional dis-

tribution of the values of the distance function, that is the one-sided error of the empirical

model of Equation 12, into a measure of efficiency that is bounded by 0 and 1. In our case

at hand, the measure describes the environmental performance, considering the trade-off

between fresh fruit bunch output and biodiversity,

EPi = exp(−ui). (14)

EP is a measure of how much biodiversity is lost at no additional gain of fresh fruit bunch

output, or vice versa, how much fresh fruit bunch output is forgone with no reduction of

biodiversity loss, at given input levels.

4 Results

Our empirical model delivers several layers of results12. First we discuss the hyperbolic

distance function. Second, we provide a brief discussion of robustness checks in support

12The distance functions are estimated in R (R Core Team, 2019) using the npsf package (Badunenko et al.,
2019)
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of the empirical approach. Third, we turn to the coefficients of the hyperbolic inefficiency

component of the error and derive marginal effects as well their implications regarding

smallholder environmental performance. Fourth, we calculate the cost of abatement by

means of shadow price calculation from our dual framework.

4.1 Production technology

Table 2 exhibits the ML estimates of the first order terms and the determinants of ineffi-

ciency as well as the associated standard errors of the restricted hyperbolic distance func-

tion13. The coefficients capture the effect of the individual variables on the distance func-

tion value. Loss of biodiversity as well as increases in inputs augment the distance value

which is reflected in the negative signs of the respective coefficients and compare well

with results of other works on smallholder oil palm production concerning both biodiver-

sity trade-off (Grass et al., 2020) and input use (Soliman et al., 2016). The effect of labor

is not statistically significant, while the direction as well as magnitude are reasonable in

light of the notoriously low labor intensity of oil palm production (Kubitza et al., 2018a).

The first-order coefficient of the age of trees is significant and explains a large chunk of de-

sired output. Additionally the coefficient of the time trend (ρ) suggests that environmental

technology progressed by 8% between periods, i.e. over three years.

13A table detailing the full list of estimated parameters is listed in Table 8 of Annex II
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TABLE 2: First order terms and parameter estimates of the determinants of inefficiency of
the restricted hyperbolic distance function

DR(x, y, b)

Technology

α0 (Intercept) −0.48 (0.08)∗∗∗

α1 (Size) −0.37 (0.08)∗∗∗

α2 (Labor) −0.06 (0.06)

α3 (Age of Palms) −0.26 (0.08)∗∗∗

α4 (Agrochemicals) −0.06 (0.02)∗∗∗

β1 (Biodiversity loss) −0.42 (0.04)∗∗∗

β11 (Biodiversity loss)2 0.18; (0.08)∗∗

Inefficiency

τ0 (Intercept) 1.24 (2.36)

τ1 (Age) −0.29 (0.12)∗∗

τ2 (Age2) 0.00 (0.00)∗∗

τ3 (Education) −0.03 (0.43)

τ4 (Education2) 0.03 (0.08)

τ5 (HH size) 0.31 (0.15)∗∗

τ6 (Transmigrant) 1.17 (0.48)∗∗

τ7 (Chemical weeding) 0.50 (0.46)

τ8 (Manual weeding) 1.09 (0.39)∗∗∗

τ10 (Land title) 0.98 (0.55)∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

The negative and significant (β1) positive and significant (β11) evidence an inverse-U
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relationship between palm output and biodiversity loss. We observe both farmers with

low as well as farmers with high levels of biodiversity loss at equivalent levels of output

of oil palm fruits. High levels of fresh fruit bunch production is associated with low levels

of biodiversity (high levels of biodiversity loss), however, only until a certain threshold

where in turn, low levels of biodiversity loss are also negatively associated with fresh fruit

bunch production.

Figure 2 displays the inverted partial hyperbolic distance function which fits the ob-

served fresh fruit bunch production measured in tonnes and biodiversity, conditional on

mean input usage14. The producer with maximum observed biodiversity on the far right

in Figure 2 operates a relatively new (3 years) plantation that still yields low levels of fresh

fruit output. Agrochemical use and weeding are low which enables a high level of biodi-

versity. On the other end of the spectrum and on the left side in the plot, we also observe

producers with high agrochemical use and weeding practices that result in high levels of

biodiversity loss, which in turn decreases pollinator populations and ultimately impedes

palm productivity. In between farmers with such output structures, we also observe a

wide range of farmers exhibiting either higher levels of output, lower levels of biodiver-

sity loss or both. The maximum value of the environmental technology is at about 190

tonnes of fresh fruit bunch output and 3.15 effective species. In other words, maximized

fresh fruit bunch output of producers is associated with relatively low levels of biodiver-

sity, conditional on mean input usage in the sample.

4.2 Robustness checks

A number of concerns regarding the robustness of the hyperbolic distance function and

the results we derive from it arise. Specifically, our estimates hinge upon (i) the measure

of biodiversity, (ii) the functional form, and (iii) potential endogeneity, which we do not

account for in the baseline model 15.
14Note that for ease of interpretation, the function is presented in it’s inverted form to reflect the data, not

the theoretical environmental model, which has a negative externality on the horizontal axis.
15Appendix B provides a detailed assessment and discussion of all robustness checks
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FIGURE 2: Inverted partial hyperbolic distance function of fresh fruit bunch production
with respect to biodiversity

In Appendices B.2 and B.3 we estimate restricted and unrestricted hyperbolic distance

functions as well as our baseline model using species richness loss as an alternative mea-

sure of biodiversity loss. Both specifications are not contradicting our main results pro-

viding some first confidence in our choice of functional from as well as the biodiversity

measure.

With regards to endogeneity, the econometric estimation of distance functions in gen-

eral may be prone to endogeneity (Sauer and Latacz-Lohmann, 2015). Endogeneity might

arise because some regressors are functions of the error term. Nevertheless, for the hyper-

bolic distance function, (Cuesta and Zofío, 2005) argue that the almost homogeneity con-

dition implies that while some regressors can be correlated with the error term, others can

be inversely affected. Consequently, the ratios and products regressors can be regarded as

exogenous. To test this empirically, we follow recent advances of Kumbhakar and Tsionas

(2016) and Griffiths and Hajargasht (2016) and test for the presence of endogeneity (e.g. see

Wimmer and Sauer, 2020). We present the results in B.4.The main disadvantage of these

approaches in relation to our study of course is that they do not allow to include variables

that affect the outputs jointly but instead neglect their interactive effects. The parameter

estimates and average inefficiency measures do not differ qualitatively from the parame-

ters in the main text, which provides support that endogeneity is not a major problem in
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our specification. These results confirm the assumption that smallholder producers do not

optimize production with respect to biodiversity loss.

4.3 Inefficiency

Figure 3 depicts the distribution of hyperbolic efficiency, i.e. the environmental perfor-

mance scores across the sample. The mean environmental performance of production un-

der consideration of loss of biodiversity is 0.78, implying that farm managers could expand

output by 28.22% (1/0.78) and contract biodiversity loss by 22.01% (1 - 0.28) at the same

time and at given input use, on average, respectively.

While the bottom end of table 2 lists the parameter estimates ρ of the drivers of envi-

ronmental performance table 3 exhibits the corresponding marginal effects. We find that

the age of the household head of the farm is positively associated with environmental

performance. The switched sign of the squared term additionally indicates decreasing

returns in this relationship, although, the magnitude of this effect is rather small. Re-

garding management practices, we find large inefficiency increasing effects from chemical

and manual weeding practices as well as whether the family of the farm has participated

in the trasmigrasi program. The latter two are also statistically significant at the 5% lev-

els in both models. Weeding - whether manual or chemical - targets the elimination of

species on the plot and therefore reduces the performance of the production with respect

to biodiversity. While other authors find that producers who had been associated with the

trasmigrasi program are more productive and economically better off (Gatto et al., 2017),

evidence from our model suggests that their environmental performance is worse than

that of autochthonous producers. A likely explanation is found in the higher agrochemical

input use of transmigrant farmers, as well as the intensified production of farmers with

land titles (Kubitza et al., 2018b). Both practices disproportionally inflict stronger effects

on biodiversity, albeit increasing oil palm fruit output on average.
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TABLE 3: Marginal effects of determinants of environmental performance

Mean St. Dev. Min Max

Age 0.041 0.018 0.099 0.011
Education 0.004 0.002 0.009 0.001
Household Size -0.043 0.019 -0.105 -0.012
Transmigrant -0.164 0.072 -0.399 -0.045
Chemical weeding -0.070 0.031 -0.171 -0.019

Manual weeding -0.153 0.068 -0.373 -0.042
Land title -0.138 0.061 -0.335 -0.038

4.4 Shadow prices

In order to derive shadow prices expressing the abatement cost of the non-marketed out-

put, we require real market prices to solve the equation. The survey data reveals the aver-

age prices per kg of oil palm fresh fruit bunch obtained by the sampled farmers are (890),

(1,010) and (1,023) Indonesian Rupiah (IDR) for 2012, 2015 and 2018, respectively. We de-

flate the Indonesian consumer price index retrieved from the Federal Reserve Bank of St.

Louis (2020) and apply a constant exchange rate16. Making use of the duality of the dis-

tance function, we calculate shadow prices for biodiversity loss which are presented on

the left-hand side of table 4. The values indicate how much revenue would be forgone if

16 USD
IDR = 0.00007

26



TABLE 4: Shadow prices in constant USD (2015)

per farm per ha
Mean Median St. Dev. Mean Median St. Dev.

2018 325 287 231 268 220 230
2015 369 325 262 304 250 261
2012 374 330 266 308 253 265

one more species was conserved on the plot. Shadow prices reflect the dynamics on the

frontier, namely in the absence of inefficiency. The shadow price of an inefficient producer

would be zero since biodiversity can be increased without reducing outputs or - at least

for agrochemicals - input use. The right hand side illustrates individual shadow prices

divided by the respective plot size and thus it provides a measure on both a per species

and per ha basis. About 33% of the farms in the sample exhibit negative shadow prices,

which implies that these are scaled back to the negatively sloped portion of the function

(Färe et al., 2005; O’Donnell and Coelli, 2005). We follow Färe et al. (2005) and calculate

and report the summary statistics of shadow prices for the remainder of 67% of the farms.

In our sample, the value for conserving one species on a farmers plantation is 325 USD

in 2018 on average. However, the variation of the shadow prices is quite substantial, con-

firming the results of Bateman et al. (2015) who find considerable idiosyncrasy in oil palm

smallholders’ capacities to conserve biodiversity. One limitation in the interpretation of

shadow prices is that since we measure biodiversity on agricultural production sites our

trade-off measure entails only the lower part of biodiversity. The potential relationship be-

tween oil palm production and biodiversity beyond sample values is unknown and most

likely non-linear.

To put the average shadow price in perspective, in 2018 the average farm income of

smallholders in Jambi province was 2, 179 USD per year. Thus, for an average farmer, the

abatement cost for raising average biodiversity by one species on the whole plantation

area is about 15% annual income from oil palm cultivation. In turn, the cost of eliminating

biodiversity shortfalls - namely augmenting the biodiversity of all farmers to the level of

the best practitioner (15.1 ENS) - would inflict costs in terms of output loss of 398, 690 USD.
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5 Payments for ecosystem services (PES) simulation

As shadow prices reveal the opportunity cost of producing less marketable output and in-

stead diminish unmarketable output, shadow prices are key to designing respective con-

servationist policy. Although shadow prices only reflect the private marginal benefit while

the social marginal benefit from conserving biodiversity remains unknown - albeit larger

than the private one - they still allow us to derive supply functions for the biodiversity

provision of smallholder producers.

PES are a popular policy instrument and they are frequently implemented to preserve

ecosystem services (Bulte et al., 2008; Jack et al., 2008; Salzman et al., 2018; Schomers and

Matzdorf, 2013). In essence, PES schemes take the form of a Pigouvian subsidy in which

the government subsidizes the provision of an environmental good that is otherwise not

marketed. Practically, PESs are implemented in different ways depending on the specific

goods as well as the desired outcomes. Among a variety of PES schemes, two prominent

designs are management- and performance-based PES. The former reward producers for

engaging in or refraining from specific agricultural practices that are harmful to the ecosys-

tem service. In the latter scheme producers are compensated for providing certain levels of

the ecosystem service which are set a priori (FAO, 2007; Schomers and Matzdorf, 2013). In

this section we examine potential applications of both designs in the smallholder oil palm

production sector of Jambi province.

In the following, we calculate the outcomes of the two alternative incentive settings

to achieve higher levels biodiversity. First, we predict a management-based payment, in

which participants are rewarded for engaging in or refraining from certain practices associ-

ated with environmentally detrimental outcomes. Second, we compare the management-

based measure with a scenario of performance based payments that reward the participant

for achieving a certain level of outcome in the environmental indicator. For the sake of sim-

plicity, we pool the panel and confine this section to highlighting the incentive mechanisms

as well as the premium and cost magnitudes of environmental policy action in Jambi.
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5.1 Management-based measures

We argue that manual weeding could be a reward-worthy agricultural practice due to

two particular reasons, one of which is empirical and the other theoretical. First, since

weeding increases the hyperbolic distance to the production frontier and therefore lowers

the environmental performance of farmers, moderating the management practice could

lead to less loss of biodiversity without losing output. Second, selectively removing plant

species from the plots by definition lowers biodiversity. Hence, a policy targeting manual

weeding could kill two birds with one stone, namely eliminating a source of inefficiency -

without a loss of productivity - as well as technologically lowering the loss of biodiversity

- potentially with a loss of productivity.

TABLE 5: Aggregated biodiversity and fresh fruit bunch produc-
tion outcomes for different weeding scenarios of practice based
PES measures compared with the elimination of inefficiency

Eliminating ∆ENS ∆ENS (%) ∆y ∆y (%)

Manual weeding 10 1.7 53,013 1.3
Chemical weeding 9 1.4 42,562 1.0
All weeding 19 3.1 99,527 2.4

Inefficiency 118 19.1 1,026,078 24.7

Notes: ∆ENS is the change in the number of effective species
and ∆y is the change in fresh fruit bunch production in kg.
The columns to the right express species and production ex-
pansion in percentage terms relative to the baseline status.

Table 5 details the aggregated outcome of farmers refraining from weeding practices.

Even though the marginal effects of manual weeding are substantially higher than those of

chemical weeding the omission of either leads to comparable increases of both biodiversity

and oil palm output at around 1.4-1.7% and 1.0-1.3% respectively. If farmers dispense of

both weeding practices biodiversity could be increased by 3% and oil palm output by 2.4%,

lifting the aggregate ENS by 19 species, on average, and the production level by almost

100,000 kg.

Increasing biodiversity by means of encouraging refraining from weeding practices in-
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flicts no costs and premiums could even be zero as farmers simultaneously benefit from

increased production. Nevertheless, the result that introducing a PES scheme based on

rewarding refraining from weeding will yield win-win situations requires some caution

in its interpretation. Although including both dummy variables in the frontier does not

reveal a significant dependence of output on the respective weeding practices, both prac-

tices could be more important due to two reasons. First, the insignificant importance of

weeding practices for the production technology and the importance for the environmen-

tal performance could be due to the overall low productivity. In case of non-linearity of

this relationship, with further technological change farmers could reach production levels

where weeding practices make a more profound difference. Second, the significance levels

of the coefficients are conditional on the sample size, which is rather small. Nonetheless,

the fact that the weeding practices can be associated with negative environmental perfor-

mance of smallholders could feed into policy measures to mitigate biodiversity at minimal

output cost.

5.2 Performance based payments

Within performance-based PES schemes, policymakers target specific outcomes of an en-

vironmental variable, either in terms of increases or specific target levels (FAO, 2007; Bulte

et al., 2008; Sattler and Matzdorf, 2013). Additionally, they set a premium - usually based

per cultivation area unit - which the farmer receives if he participates in the program. The

farmer’s willingness to participate is equal to the shadow price. If premium payments are

equal or exceed his potential loss of oil palm output, she is likely to participate, and other-

wise she will not. A host of biodiversity conservation targets are conceivable. For the sake

of highlighting outcomes of the mechanism of such payments, we consider two potential

target levels. First we simulate policy to target a similar level of biodiversity increase that

could be achieved by eliminating inefficiency in the production process. Second, we con-

sider a policy that targets biodiversity growth levels comparable with the management

based programs from the previous section. We assume that farmers are maximizing prof-
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its with regards to fresh fruit bunch output or income from the payments, while being

indifferent towards biodiversity levels.

TABLE 6: Policy scenarios targeting social equality, uniform biodiversity distribution and cost
minimization

Social inclusivity Uniform Biodiversity Cost minimizing

Inefficiency-oriented
Aggregated ENS increase 19.1% 16.7% 20%
px−1

1 448$ 667$ 306 $
∆Y -36,090$ -40,696$ -55,3566$
∆ENS 118 103 122
Participation 100% 98% 73%
Cost 119,489$ 177,922 65,484

px−1
1 designates the premium per land unit (ha), ∆Y the change in oil palm fruit output

(kg) and ∆ENS the change in the effective number of species.

Table 6 illustrates the results of playing out different performance based PES17. The

upper panel presents simulation of a policy that targets a similar level of biodiversity con-

servation compared to the magnitude of eliminating efficiency. The lower panel displays

the outcomes of the policy that targets magnitudes of conservation similar to those ob-

tained in the management-based PES of Table 5. In addition to conserving biodiversity,

PES might differ in how they aim to conserve biodiversity focusing on maximizing partic-

ipation in the program, uniformity of the biodiversity level in the region, or minimizing

costs.

Column one presents a scenario that ensures that all farmers are willing to participate

in the program, i.e. that the premium is equal to the maximum value of the farmer’s

willingness to pay. While such an approach might not be the most cost-efficient it favors

social inclusivity alongside some level of equality of biodiversity. The second column lists

the outcomes of a policy program that targets raising biodiversity to an equal standard

throughout the region. In other words, the policy targets a set minimum level of species

17Section C of the appendix details the calculations of the PES simulation scenarios in detail.
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to be present at every plantation. From a biodiversity perspective this makes sense as a

uniform distribution of species across space determine higher gamma-diversity levels. To

achieve similar biodiversity increases as in the previous scenario, the policy rewards farm-

ers with at least three and five ENS respectively and sets the premium such that all farmers

are willing to participate. The third column eventually exhibits the cost minimizing results

while ensuring participation rates of more than 50%.

From the three sets of results we conclude that, (i) while aiming at equal levels of biodi-

versity throughout the sector is ecologically highly desirable, it is by far the most expensive

endeavor among the three options at hand. The policy sets in on farmers with high levels of

biodiversity loss and high shadow values and targets minimum levels accordingly. On the

downside, many farmers are rewarded without adjustments as their production already

by-produces sufficiently little loss of biodiversity. However, individual losses in forgone

production revenue are very limited. moreover, (ii) unequal but substantial increases of

biodiversity are comparably cheap to obtain.

However, although PES schemes are frequently applied to address externality prob-

lems in many different - including developing country - settings (Wunder et al., 2008;

Sims and Alix-Garcia, 2017) around the world, their practicality and success are driven

by transaction costs (Banerjee et al., 2017). Monitoring and measuring the provision of

environmental goods is often not feasible at all and if possible associated with very high

transaction costs which in turn often outpaces provision expenses, thus rendering policies

as highly cost ineffective. However, remote-sensing based biodiversity monitoring oppor-

tunities are arising and could soon be available at a granularity that allows cheaply de-

termining site-specific measurements of biodiversity and other environmental indicators

(Gullstrand et al., 2014).

Generally, detecting agricultural practices that are detrimental to the provision of not

only desired outputs but also undesired ones is perhaps a promising start to design PES

schemes. PESs often solely rely on the mere minimization of practices that are harmful

to the ecosystem service and thereby neglect potential win-win scenarios which naturally
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should be exploited before policy targets improving environmental outcomes, which in-

evitably come at the cost of agricultural production. Therefore, incentive-based environ-

mental policies are likely to be beneficial not only as they achieve the desired conservation

of biodiversity but also because they might lead farmers to increase their environmental

performance, i.e. producing more at a lower burden of biodiversity loss.

6 Summary and conclusion

Indonesia has become a hotspot for environmental degradation, while providing the world’s

largest supplies of palm oil. Smallholder farmers are substantially contributing to both

palm oil production as well as the decay of ecosystem services. Concurrently, the trade-

offs between oil palm production and several ecosystem services in large-scale operations

are well understood, while the environmental performance of smallholders has not been

addressed in the relevant literature.

In this paper we address the literature gap and derive a full environmental production

function accounting for the economic desirable output, undesirable environmental degra-

dation - measured as plant biodiversity - conventional farm inputs and socioeconomic

factors as well as management practices to explain shortfalls in managerial outcomes. Ad-

ditionally, the duality of the outputs enables calculating the cost of abatement in the small-

holder production system, which we use to simulate several PES policy scenarios.

Our main results are fourfold. First, we find that the production of fresh fruit bunches

leaves ample room to improve efficiency under consideration of environmental degrada-

tion. Oil palm output can be expanded by 28% while loss of biodiversity at given input

levels could be contracted by 22%. Second, both chemical as well as manual weeding re-

sult in worsened environmental performance of oil palm production. Third, aside from

potentially eliminating inefficiency, the abatement cost for increasing average biodiver-

sity by one species on a farmers plantation amounts to 325 USD, on average, or about

15% of average annual palm oil income for smallholder oil palm producers. Fourth, PESs
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are promising policy options to conserve ecologically meaningful levels of biodiversity

while simultaneously allowing smallholders to increase output levels. In general, identi-

fying drivers of environmental inefficiency is key to successfully designing respective PES

schemes.

Given that smallholders are important contributors to global palm oil supply, our re-

sults regarding their environmental performance suggest that improved management prac-

tices can play an important role in counteracting large-scale species extinction. Small-

holders manage nearly half of Indonesia’s oil palm area at comparably low yields, and

effectively-designed policy aims to eliminate inefficiencies in production and reward con-

servation of biodiversity at average levels of opportunity costs and thereby provides promis-

ing avenues for more sustainable smallholder palm production.
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Appendix

A Additional descriptives of biodiversity indicators

FIGURE 4: Density of sample plots with different levels of plant species diversity assessed
by diversity indices of order (q = 0) (SR), (q = 1) (ENS), and (q = 2) (Simpson diversity).
SR is more sensitive to differences between samples but potentially unreliable as diversity
measure when undersampling is expected
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B Robustness checks

In this section we address the problems of dependency on biodiversity measure, distance

function specification, and endogeneity. First, we compare the SFA specification against

the OLS specification using a Likelihood Ratio test. Second, we estimate restricted and

unrestricted hyperbolic distance functions. Third, we estimate our baseline models using

alternative biodiversity measures. Fourth, we estimate two-equation models to investigate

the potential endogeneity between desirable and undesirable outputs as well as input and

the error term.

B.1 Likelihood ratio test comparing OLS and error components specifications

Since the model with inefficiency and without are nested, we can perform a model compar-

ison using the likelihood ratio test to assess the error component specification (Battese and

Coelli, 1992). The first candidate model is translog production frontier (no inefficiency)

term where the dependent is production variable and the independent are the four in-

puts; bad output is not part of the frontier. The second candidate model is this model, but

adding a time invariant inefficiency term, that is a draw from a half-normal distribution.

Both candidate models are in translog.

Under the null hypothesis (no inefficiency, only noise), the test statistic asymptotically

follows a mixed χ2 distribution (Coelli, 1995). The results from the test are reported in

Table 7 below. The estimated P-value indicates that the data clearly reject the OLS model

in favor of the stochastic frontier model, i.e. there is significant technical inefficiency (see

Henningsen, 2015).
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TABLE 7: Likelihood ratio test comparing OLS and error components specifications

Model 1: OLS (no inefficiency)
Model 2: Error Components Frontier (ECF)
LogLik Df Chisq Df Pr(>Chisq)

16 -72.9
18 -67.2 2 11.3 0.0013*

* indicates significance at the 0.001

B.2 Hyperbolic and enhanced hyperbolic specifications and estimation results

Empirical specification of the hyperbolic distance function:

−lnyi = α0 +
4

∑
k=1

αkln(xki) + β1ln(b∗i ) +
4

∑
k=1

β1kln(b∗i )ln(xi) +
1
2

4

∑
k=1

4

∑
l=1

αkl ln(xki)ln(xli)+

+
1
2

β11ln(b∗i )
2 + ρ0ti + ui + vi.

(15)

Empirical specification of the enhanced hyperbolic distance function:

−lnyi = α0 +
4

∑
k=1

αkln(x∗ki) + β1ln(b∗i ) +
4

∑
k=1

β1kln(b∗i )ln(x∗i ) +
1
2

4

∑
k=1

4

∑
l=1

αkl ln(x∗ki)ln(x∗li)+

+
1
2

β11ln(b∗i )
2 + ρ0ti + ui + vi.

(16)

TABLE 8: Hyperbolic and enhanced hyperbolic distance functions

DH(x, y, b) DE(x, y, b)

Technology
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DH(x, y, b) DE(x, y, b)

α0 (Intercept) −0.49 (0.09)∗∗∗ −0.35 (0.04)∗∗∗

α1 (Size) −0.43 (0.08)∗∗∗ −0.26 (0.03)∗∗∗

α2 (Labor) −0.06 (0.06) −0.10 (0.03)∗∗∗

α3 (Agrochemicals) −0.04 (0.02) −0.00 (0.01)

α4 (Age of palms) −0.33 (0.09)∗∗∗ −0.25 (0.03)∗∗∗

β1 (Biodiversity loss) −0.45 (0.04)∗∗∗ −0.12 (0.04)∗∗

β12 −0.07 (0.07) 0.03 (0.05)

β13 −0.05 (0.05) 0.02 (0.06)

β14 −0.02 (0.02) 0.01 (0.01)

β15 −0.03 (0.07) −0.02 (0.05)

α12 0.04 (0.09) −0.05 (0.05)

α13 0.01 (0.02) 0.00 (0.01)

α14 −0.17 (0.12) −0.05 (0.04)

α23 0.01 (0.01) −0.01 (0.01)

α24 0.18 (0.08)∗∗ 0.10 (0.03)∗∗∗

α34 0.03 (0.02)∗ 0.00 (0.01)

α11 −0.15 (0.13) 0.02 (0.04)

α22 −0.00 (0.03) −0.03 (0.02)

α33 −0.00 (0.01) 0.00 (0.00)

α44 −0.20 (0.20) −0.04 (0.06)

β11 0.15 (0.07)∗∗ −0.03 (0.08)

ρ0 0.08 (0.04)∗∗ 0.07 (0.02)∗∗∗

σv

ω0 −3.76 (0.40)∗∗∗ −4.29 (0.15)∗∗∗

Inefficiency

τ0 0.95 (2.42) −1.54 (7.51)
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DH(x, y, b) DE(x, y, b)

τ1 (Age) −0.28 (0.13)∗∗ −0.71 (0.41)∗

τ2 (Age2) 0.00 (0.00)∗∗ 0.01 (0.00)∗

τ3 (Education) −0.05 (0.44) 1.71 (2.18)

τ4 (Education2) 0.03 (0.08) −0.33 (0.40)

τ5 (HH size) 0.30 (0.16)∗ 0.44 (0.38)

τ6 (Transmigrant) 1.01 (0.49)∗∗ 2.41 (1.34)∗

τ7 (Chemical weeding) 0.64 (0.50) 4.99 (3.22)

τ8 (Manual weeding) 1.09 (0.41)∗∗∗ 3.66 (1.50)∗∗

τ10 (Land title) 0.89 (0.59) 1.68 (1.42)

Mean TE 0.78 0.96

Observations 123 123

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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TABLE 9: Marginal effects of determinants of inefficiency (from hyperbolic and enhanced
hyperbolic distance functions)

DH(x, y, b) DE(x, y, b)

Mean St. Dev. Min Max Mean St. Dev. Min Max

Age -0.039 0.016 -0.093 -0.011 -0.018 0.029 -0.172 0.000
Education -0.006 0.003 -0.015 -0.002 0.043 0.070 0.000 0.414
Household size 0.042 0.018 0.012 0.101 0.011 0.018 0.000 0.107
Transmigrant 0.141 0.060 0.041 0.336 0.060 0.099 0.000 0.583
Chemical weeding 0.090 0.038 0.026 0.215 0.125 0.204 0.001 1.205

Manual weeding 0.152 0.065 0.044 0.362 0.092 0.150 0.001 0.883
Land title 0.125 0.053 0.036 0.298 0.042 0.069 0.000 0.406

TABLE 10: Shadow pirces in ’000 IDR (Derived from hyperbolic and enhanced hyperbolic
distance functions

DH(x, y, b) DE(x, y, b)

Mean Median St. Dev. Mean Median St. Dev.

2018 6,381 4,187 17,659 1,120 11,357 107,277
2015 6,381 4,187 17,659 1,106 11,212 105,914
2012 5,551 3,642 15,363 975 9,880 93,330

B.3 Models with alternative biodiversity indicator: SR loss as undesired out-

put

The main model of the paper relies on the inverse Shannon index which under the Hill

number framework allows to measure biodiversity loss in terms of loss of effective num-

ber of species. While different in levels, the measure is equal to Simpson’s diversity in-

dex. Another way to measure biodiversity is the simpel species richness, with q = 0 in

the Hill-numbers system. Here, we use loss of species richness, which counts the num-

ber of species, without weighing their relative abundance as an alternative measure of

biodiversity. Again, we estimate restricted, unrestricted and our hybrid version of the hy-

perbolic distance functions and find no meaningful contradiction with the model that uses

the inverse Shannon index as the biodiversity measure. That is we find similar distance

elasticities and weeding activity to be relevant for inefficiency in the production process.
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TABLE 11: Hyperbolic, restricted and enhanced hyperbolic distance functions with inverse
of SR as an undesirable output

DH(x, y, b) DR(x, y, b) DE(x, y, b)

Technology

α0 (Intercept) −0.49 (0.09)∗∗∗ −0.48 (0.08)∗∗∗ −0.35 (0.04)∗∗∗

α1 (Size) −0.43 (0.08)∗∗∗ −0.37 (0.08)∗∗∗ −0.26 (0.03)∗∗∗

α2 (Labor) −0.06 (0.06) −0.06 (0.06) −0.10 (0.03)∗∗∗

α3 (Agrochemicals) −0.04 (0.02) −0.06 (0.02)∗∗∗ −0.00 (0.01)

α4 (Age of palms) −0.33 (0.09)∗∗∗ −0.26 (0.08)∗∗∗ −0.25 (0.03)∗∗∗

β1 (Biodiversity loss) −0.45 (0.04)∗∗∗ −0.42 (0.04)∗∗∗ −0.12 (0.04)∗∗

β12 −0.07 (0.07) −0.08 (0.06) 0.03 (0.05)

β13 −0.05 (0.05) −0.06 (0.05) 0.02 (0.06)

β14 −0.02 (0.02) −0.01 (0.01) 0.01 (0.01)

β15 −0.03 (0.07) −0.06 (0.07) −0.02 (0.05)

α12 0.04 (0.09) 0.03 (0.08) −0.05 (0.05)

α13 0.01 (0.02) 0.01 (0.02) 0.00 (0.01)

α14 −0.17 (0.12) −0.14 (0.11) −0.05 (0.04)

α23 0.01 (0.01) 0.01 (0.01) −0.01 (0.01)

α24 0.18 (0.08)∗∗ 0.16 (0.08)∗ 0.10 (0.03)∗∗∗

α34 0.03 (0.02)∗ 0.04 (0.01)∗∗∗ 0.00 (0.01)

α11 −0.15 (0.13) −0.12 (0.11) 0.02 (0.04)

α22 −0.00 (0.03) −0.00 (0.03) −0.03 (0.02)

α33 −0.00 (0.01) −0.01 (0.00)∗∗ 0.00 (0.00)

α44 −0.20 (0.20) −0.19 (0.19) −0.04 (0.06)

β11 0.15 (0.07)∗∗ 0.18 (0.08)∗∗ −0.03 (0.08)

ρ0 0.08 (0.04)∗∗ 0.06 (0.04) 0.07 (0.02)∗∗∗

σv
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DH(x, y, b) DR(x, y, b) DE(x, y, b)

ω0 −3.76 (0.40)∗∗∗ −3.94 (0.38)∗∗∗ −4.29 (0.15)∗∗∗

Inefficiency

τ0 0.95 (2.42) 1.24 (2.36) −1.54 (7.51)

τ1 (Age) −0.28 (0.13)∗∗ −0.29 (0.12)∗∗ −0.71 (0.41)∗

τ2 (Age2) 0.00 (0.00)∗∗ 0.00 (0.00)∗∗ 0.01 (0.00)∗

τ3 (Education) −0.05 (0.44) −0.03 (0.43) 1.71 (2.18)

τ4 (Education2) 0.03 (0.08) 0.03 (0.08) −0.33 (0.40)

τ5 (HH size) 0.30 (0.16)∗ 0.31 (0.15)∗∗ 0.44 (0.38)

τ6 (Transmigrant) 1.01 (0.49)∗∗ 1.17 (0.48)∗∗ 2.41 (1.34)∗

τ7 (Chemical weeding) 0.64 (0.50) 0.50 (0.46) 4.99 (3.22)

τ8 (Manual weeding) 1.09 (0.41)∗∗∗ 1.09 (0.39)∗∗∗ 3.66 (1.50)∗∗

τ10 (Land title) 0.89 (0.59) 0.98 (0.55)∗ 1.68 (1.42)

Mean TE 0.78 0.78 0.96

Observations 123.00 123.00 123.00

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

B.4 Endogeneity

In this section we assess the problem of endogeneity of our approach by estimating alter-

native models. In general, addressing the endogeneity problem in SFA poses a formidable

methodological challenge, which has been subject of a seizable strand of literature. In the

case of input distance functions, many empirical papers provide ways to account for en-

dogeneity, which usually requires the availability of input prices. For a more elaborate

discussion on the endogeneity issue in an SFA setting, see Parikoglou et al. (2022).

Here we opt for two specific models to assess the problem of endogeneity. First, we

implement the approach proposed in Griffiths and Hajargasht (2016) to assess whether

55



there is a potential correlation between regressors and the error terms. Second, we consider

the approach of Kumbhakar and Tsionas (2016) to assess whether modelling undesirable

output in a system, accounting for endogeneity, will affect the results. Both models are

estimated in Bayesian inference (Kumbhakar and Tsionas, 2016; Griffiths and Hajargasht,

2016).

B.4.1 Modelling endogeneity between regressors and errors (Griffiths and Hajargasht,

2016)

Griffiths and Hajargasht (2016) considered a panel stochastic frontier model in which cor-

relations between the effects and the regressors are based on a generalisation of the corre-

lated random effects model proposed by Mundlak (1978) and extended by Chamberlain

(1984). They show that by transforming the inefficiency term into a normally distributed

random term and modelling endogeneity through the mean or covariance of the normal

errors, a range of stochastic frontier models with endogeneity can be handled. To model

correlation between the inefficiency error ui and some or all of the inputs, they assume

that:

lnyt = ln f (Xit, t)− ui + νit

H(ui) = xit
i
′γ + ςt

i

(17)

where, H(ui) = ln(ui), which implies that ui has a lognormal distribution, and it is as-

sumed to be correlated with time invariant firm specific covariates x̄i = T−1 ∑T
t=1 xt

i . This

is an extension of the model considered by Mundlak (1978) for a conventional random

effects panel data model with correlated effects. After estimating the model in Equation

17, we can assess whether the posterior standard deviations for the explanatory variables

are quite large compared to their posterior means; if this is the case, it implies that the

regressors are exogenous (Griffiths and Hajargasht, 2016). To reflect our case at hand with

desirable and undesirable outputs, we estimate the model in Equation 17, where desirable
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output is a function of inputs (area A, labour L, fertilizers F), undesirable output B and

time trend t, i.e. yit = f (Xit, Bit, t) and we assume it is Cobb-Douglas in inputs, unde-

sirable output and time. We choose as determinants z of potential endogeneity and u the

following four variables: (i) size, (ii) labor, (iii) fertilizers and (iv) biodiversity. Since the

estimated standard deviations are relatively large compared to the posterior means of the

estimated coefficients of size, labor, fertilizers and biodiversity in the inefficiency specifi-

cation, there is no evidence of endogeneity.

TABLE 12: Posterior means and credible intervals at the 95% of eq. 17

Variable Mean Std. dev. 95% CI
constant -0.192 0.187
lnS 0.785 0.125
lnL 0.352 0.086
lnA 0.757 0.119
lnI 0.015 0.021
lnB -0.207 0.138
t -0.187 0.135
Avg. TE 0.853
σ2

ν 0.370
Inefficiency correlations
constant -2.172 0.458
lnL -0.422 0.536
lnI 0.141 0.488
lnS -0.158 0.558
lnB -0.077 0.583

B.4.2 Modelling desirable and undesirable outputs in a system (Kumbhakar and Tsionas,

2016)

In Equation 17, undesirable output is part of the frontier along with other outputs. Kumb-

hakar and Tsionas (2016) model the production process of firms as a system of simulta-

neous production technologies for desirable and undesirable outputs, following the ideas

of Fernandez et al. (2002, 2005). The system of equations can be presented generically as

(Kumbhakar and Tsionas, 2016):
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lnyt = ln f (Xit, t)− ui + ν1it

lnBit = lnh(Yit, t) + ν2it

(18)

where yt is the desirable output, f (Xit, t) is a function of X inputs and the time trend t,

B is the undesirable output, and h(Yit, t) is a function of Y desirable outputs and the time

trend t. This approach has two main characteristics. First, inefficiency is assumed to be

only in the first equation, that is the production of the desirable output. The second is that

the undesirable output is a function of desirable output in the second equation. Hence, it

is assumed that farmers aim to maximize production output, and inefficiency captures the

differences in their ability to achieve this; while undesirable output is a byproduct of this

production process, i.e. is not directly associated with their primary production behaviour.

If the above system of simultaneous equations in Equation 18, yit is simultaneously esti-

mated, it can control for potential endogeneity of outputs (Kumbhakar and Tsionas, 2016).

Additionally then, following Kumbhakar and Tsionas (2016), we estimate the following

models:

• Model M1
lnyt = ln f (Xit, t)− ui + ν1it

lnBit = lnh(Yit, t) + ν2it

ui ∼ exp(λ)

(19)

• Model M2
lnyt = ln f (Xit, t)− ui + ν1it

lnBit = lnh(Yit, t) + ν2it

ui ∼ N+(0, σ2
u)

(20)

In both models, f (Xit, t) is translog in inputs and linear in the time trend, and h(Yit, t)

is linear in output and time trend. The priors for M1, M2 are according to (Griffin and

Steel, 2007; Kumbhakar and Tsionas, 2016). The results are presented in Table 13 below.
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TABLE 13: Posterior means at the 95% credible interval of the two equation models. The
upper panel lists production technologies for desirable output and the lower panel lists
the undesirable output technology

Parameters M1 M2
constant 0.461* -0.443*
lnS 0.780* 0.782*
lnL 0.228* 0.238*
lnA 0.382* 0.376*
lnI 0.042 0.045
lnS · lnS 0.051 -0.028
lnS · lnL 0.120 0.118
lnS · lnA 0.281 0.291
lnS · lnI -0.044 -0.035
lnL · lnL 0.011 0.014
lnL · lnA -0.505* -0.516*
lnL · lnI 0.016 0.012
lnA · lnA -0.538* -0.537*
lnA · lnI -0.025 -0.021
lnI · lnI 0.004 0.003
t -0.202* -0.211*
RTS 0.65 0.65
Average TE 0.74 0.76
σ2

ν1 0.13 0.14
σ2

ν2 0.20 1.82
Undesirable output equation
constant 0.111* 0.113*
lny -0.097* -0.100*
t -0.054 -0.055
*The corresponding 95% credible interval does not contain zero.

The elasticities in the frontier with respect to inputs result in decreasing returns to

scale, which is consistent to the returns to scale of the main results. Furthermore, the

average efficiency scores of M1 and M2 equal the average efficiency score of the hyperbolic

distance function in the main text. These qualitatively similar results, along with the results

in Appendix B.4.1 provide further evidence that endogeneity is not a sever problem in our

model.
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C Payments for ecosystem services simulation calculations

In section 5.2 we report the results of simulating several policy interventions. In particular,

we discuss the hypothetical outcomes of PES payments. The literature on PES implemen-

tation and targeting offers plentiful approaches and often defines the externality along the

social, environmental and economic dimensions of sustainability. We consider situations in

which policy-makers aim at reducing total biodiversity loss to a pre-determined level and

simultaneously (a) maximize participation of farmers in the program (social inclusivity), (b)

maximize uniformity of biodiversity across farms (uniform biodiversity), and (c) minimize

cost of the program.

We select two potential targets of biodiversity loss reduction which align in magnitude

with the management-based scenarios of eliminating weeding practices and the extend of

environmental performance. We assume that farmers are maximizing profits with regards

to fresh fruit bunch output or income from the subsidy, while being indifferent towards

biodiversity levels. Premiums are assumed to be coupled to the area, i.e. issued per ha of

plantation (px−1
1 ).

In order for farms to be willing to participate in the program the income received

through the program must be higher than the forgone income from palm oil production ,

pi > py
dy
db , i.e. the premium must be higher than the shadow price of conserving biodiver-

sity. At any payment that is larger than pi, farms will participate in the program and at

any payment that is less, farms prefer to not participate in the program

Payments are issued per unit of land input (x1), and thus the threshold premium per

ha is (
p
x1

)
i
=

(
∂DR/∂y

x1

)
i
. (21)

The total biodiversity conservation in the sample is given rearranging the first order

condition of the profit maximization problem and summing over the farms that participate
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in the program (K), i.e.

∆ENS =
K

∑
i=1

(
∂DR

∂b

)
i
∗ ti, (22)

where ti is the targeted change of ENS per farm (number of b). Similarly, the total reduction

of farm output is

∆Y =
K

∑
i=1

(
∂DR

∂y

)
i
∗ ti. (23)

The share of farms that participate in the program is

P =
K
N

, (24)

and the total cost of the program is given by the sum of the premiums times the land

input (x1)

C =
K

∑
i=1

(
p
x1

)
x1i (25)

The first scenario envisages 100% participation and thus sets the premium equal the

highest shadow price in the sample ∂DR/∂y, distributed over the plantation area, p =

∂DR/∂y
x1 i

, ensuring that K = N.

The second scenario targets a uniform biodiversity level of t̄. In order to achieve similar

total biodiversity conservation levels compared with the benchmark scenarios, each farm

needs to sustain at least a minimum level. Thus here we set ti = t̄ − ENSi while ti > 0. In

our application, the benchmark scenarios are eliminating weeding or - in the second panel

- eliminating environmental inefficiency and t̄ is 3 and 5, respectively.

The third scenario minimizes costs C = ∑K
i=1

(
p
x1

)
x1i conditional on P > 0.5.
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